

Description

Our CIA-EA Epoxy Acrylate adhesive anchor system has been specially formulated as a high-performance, two component adhesive anchor system for threaded bars in uncracked concrete.

Base Material

- Uncracked concrete
- · Hard natural stone
- · Solid rock
- · Solid masonry

Features

- · Fixing close to free edges
- Versatile range of embedment depths
- Anchoring without expansion forces
- · Component volume ratio of 10:1
- Extended working time
- · High load capacities

Approvals

- IAPMO-UES ER-0311
- · Certified to ANSI / NSF 61 by UL

Shelf Life

Cartridges should be stored in their original packaging, the correct way up, in cool conditions $(+41^{\circ}F \text{ to } +77^{\circ}F)$ out of direct sunlight. When stored correctly, the shelf life will be for a minimum of 15 months from the date of manufacture.

Health & Safety

For health and safety information, please refer to the relevant Safety Data Sheet.

Cartridge Temperature	T Work (minutes)	Base Material Temperature	T Load	
Minimum +41°F	12	+23°F to +32°F	24 hours	
	12	+32°F to +41°F	180 minutes	
+41°F to +50°F	8	+41°F to +50°F	100 minutes	
+50°F to +68°F	4	+50°F to +68°F	70 minutes	
+68°F to +77°F	3	+68°F to +77°F	40 minutes	
+77°F to +86°F	2	+77°F to +86°F	40 minutes	
+86°F	1	+86°F	40 minutes	

T Work is the typical time to gel at the highest temperature in the range T Load is the typical time to reach full capacity

Number of Holes per Cartridge - Estimating Sheet

Anchor	[.] Size	(in.)	5/16	3/8	1/2	1/2	5/8	5/8	3/4	3/4	1	1	1-1/4
Drill Hol	e Dia.	(in.)	3/8	1/2	9/16	7/16	3/4	11/16	7/8	13/16	1-1/8	1-1/16	1-3/8
Embedmei	nt Depth:	(in.)	2-3/8	2-3/8	2-3/4	2-3/4	3-1/8	3-1/8	3-3/4	3-3/4	4	4	5
		250 ml	68	38	26	43	12	15	7	9	4	5	2
Estimated Number of Fixings*	Cartridge Volume	300 ml	83	47	37	61	20	24	15	17	9	10	6
Fixin	Volu	600 ml	176	99	67	112	33	39	20	23	11	13	6
		850 ml	254	143	97	161	48	57	29	34	16	18	8

*Number of fixings assumes 30ml wastage in initial extrusion and holes filled to 3/4 full

Working & Loading Times

Installation Specification

Property	Symbol	Unit						
Threaded Rod Diameter	d _a	in	5/16	3/8	1/2	5/8	3/4	1
Drill Bit Diameter	d _。	in	3/8	1/2	9/16	11/16	13/16	1-1/16
Cleaning Brush Size	d _b	in	0.5	51	0.	787	1.142	
Minimum Embedment Depth	h _{ef,min}	in	2-3/8	2-3/4	3-1/8	3-3/4	4	4
Maximum Embedment Depth	h _{ef,max}	in	6-1/4	7-1/2	10	12-1/2	15	20
Minimum Concrete Thickness	h _{min}	in	1.5 h _{ef}					
Critical Anchor Spacing	S _{cr}	in	2.0 c _{ac}					
Critical Edge Distance	C _{ac}	in	$c_{ac} = h_{ef} * (\tau_{k,uncr} / 1160)^{0.4} * max[3.1 - 0.7(h / h_{ef}); 1.4]$					
Maximum Tightening Torque	T _{inst}	ft.lb	7.5	15	25	55	80	120

Allowable Steel Strength for Threaded Rods

Carbon St ASTM F 1554 G (A307 Gr.		4 Grade 36	Carbon Steel ASTM A 193 B7		Stainless Steel ASTM F 593 CW		Stainless Steel ASTM F 593 SH		
	Diameter n)	Allowable Tension, N _{all}	Allowable Shear, V _{all}						
0.00	lb	2,110	1,080	4,550	2,345	3,630	1,870	4,190	2,160
3/8"	kN	9.4	4.8	20.2	10.4	16.1	8.3	18.6	9.6
1/0"	lb	3,750	1,930	8,100	4,170	6,470	3,330	7,450	3,840
1/2"	kN	16.7	8.6	36.0	18.5	28.8	14.8	33.1	17.1
E (0"	lb	5,870	3,030	12,655	6,520	10,130	5,220	11,640	6,000
5/8"	kN	26.1	13.5	56.3	29.0	45.1	23.2	51.8	26.7
0/4"	lb	8,460	4,360	18,220	9,390	12,400	6,390	15,300	7,880
3/4"	kN	37.6	19.4	81.0	41.8	55.2	28.4	68.1	35.1
7.07	lb	11,500	5,930	24,800	12,780	16,860	8,680	20,830	10,730
7/8"	kN	51.2	26.4	110.3	56.8	75.0	38.6	92.7	47.7
1"	lb	15,020	7,740	32,400	16,690	22,020	11,340	27,210	14,020
1	kN	66.8	34.4	144.1	74.2	97.9	50.4	121.0	62.4
1 1/4"	lb	23,480	12,100	50,610	26,070	34,420	17,730	38,470	19,820
1 - 1/4" -	kN	104.4	53.8	225.1	116.0	153.1	78.9	171.1	88.2

Allowable Tension, Nall = 0.33 x fu x nominal cross sectional area

Allowable Shear, Vall = 0.17 x fu x nominal cross section area

		Carbon Steel ASTM A 615 Grade 60			
Rebar Size		Allowable Tension, N _{all}	Allowable Shear, V _{all}		
#2	lb	3,280	1,690		
#3	kN	14.6	7.5		
#4	lb	5,831	3,004		
#4	kN	25.9	13.4		
<i>щг</i>	lb	9,111	4,693		
#5	kN	40.5	20.9		
#0	lb	13,121	6,759		
#6	kN	58.4	30.1		
<i>4</i> 7	lb	17,859	9,200		
#7	kN	79.4	40.9		
#0	lb	23,326	12,016		
#8	kN	103.8	53.4		
#10	lb	37,623	19,381		
#10	kN	167.4	86.2		

Allowable Steel Strength for Rebar

		Carbon Steel CAN/CSA-G30.18 Gr.400			
Rebar Size		Allowable Tension, N _{all}	Allowable Shear, V _{all}		
1014	lb	4,016	2,069		
10M	kN	17.9	9.2		
15M	lb	8,052	4,148		
INICI	kN	35.8	18.5		
2014	lb	11,960	6,161		
20M	kN	53.2	27.4		
2514	lb	19,975	10,290		
25M	kN	88.9	45.8		
30M	lb	28,121	14,486		
30101	kN	125.1	64.4		
2514	lb	40,089	20,652		
35M	kN	178.3	91.9		

Allowable Steel Strength for Rebar

Tension = $0.33 \times \text{fu} \times \text{nominal cross sectional area}$ Shear = $0.17 \times \text{fu} \times \text{nominal cross section area}$

1. Above values for reinforcing steel assume the design method is the same as a post-installed adhesive anchor, under the principles of anchor design (failure modes will be concrete breakout, pryout, steel failure, or adhesive bond) and not under the principles of reinforcing steel design (failure modes are typically splitting failure, inadequatebar development etc..).

Allowable Load Data in Tension and Shear

			Allow	able Concrete Ca	apacity / Bond Str	ength		
Anchor Diameter	Embedment Depth		Tension (lb)		Shear (lb)			
Bidilicitei	Dopti	f' _c = 2,500psi	f' _c = 4,000psi	f' _c = 8,000psi	f' _c = 2,500psi	f' _c = 4,000psi	f' _c = 8,000psi	
	2-3/8"	1,390	1,457	1,562	1,854	1,943	2,082	
5/16"	3-1/16"	1,793	1,879	2,014	2,390	2,505	2,685	
	3-3/4"	2,195	2,301	2,466	2,927	3,068	3,288	
	2-3/8"	1,507	1,579	1,693	2,009	2,106	2,257	
3/8"	3-7/16"	2,181	2,286	2,450	2,908	3,048	3,266	
	4-1/2"	2,855	2,992	3,207	3,806	3,990	4,276	
	2-3/4"	2,397	2,513	2,693	3,197	3,350	3,591	
1/2"	4-3/8"	3,814	3,998	4,285	5,085	5,330	5,713	
	6"	5,231	5,482	5,876	6,974	7,310	7,835	
	3-1/8"	3,065	3,212	3,443	4,087	4,283	4,591	
5/8"	5-5/16"	5,210	5,461	5,853	6,947	7,281	7,804	
	7-1/2"	7,356	7,710	8,263	9,808	10,280	11,017	
	3-1/2"	3,495	3,663	3,926	4,659	4,884	5,234	
3/4"	6-1/4"	6,240	6,541	7,010	8,320	8,721	9,347	
	9"	8,986	9,418	10,094	11,981	12,558	13,459	
	4"	5,378	5,637	6,042	7,171	7,516	8,056	
1"	8"	10,757	11,274	12,084	14,342	15,033	16,112	
	12"	16,135	16,912	18,125	21,514	22,549	24,167	

1. The above values represent mean ultimate values and allowable working loads. The allowable working loads have been reduced using a safety factor of 4.0 for tension and 3.0 for shear, however, in some cases, such as life safety, safety factors of 10.0 or higher may be necessary.

- 2. Allowable loads must be checked against steel capacity. The lowest value controls.
- 3. Tabulated data is applicable to single anchors in normal weight concrete unaffected by edge or spacing reduction factors. Values are valid for anchors installed into dry concrete in holes drilled with a hammer drill and ANSI carbide drill bit.
- 4. Service temperatures should remain approximately constant. The maximum long term temperature being 122°F and the maximum short term temperature being 176°F. Short term temperatures are those that occur over brief intervals, for example, diurnal cycling.
- 5. Linear interpolation is allowed.

CIA-EA Technical Data Sheet

Solid Substrate Installation Method

1. Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.

2. Thoroughly clean the hole in the following sequence using the appropriate wire brush from Table 11 of ER-0311 with the required extensions and a source of clean compressed air. For holes of 15 3/4" (400mm) or less deep, a blow pump may be used:

Blow Clean x2.

Brush Clean x2.

Blow Clean x2.

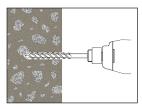
Brush Clean x2.

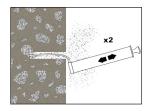
Blow Clean x2.

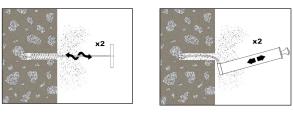
3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.

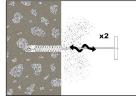
4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.

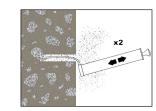
5. If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars /8" (16mm) dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.

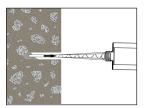

6. Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.

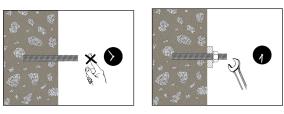

7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time (see table on page 1).


8. Any excess resin will be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mouth of the hole before it sets.


9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time, on page 1, has elapsed depending on the substrate conditions and ambient temperature.


10.Attach the fixture and tighten the nut to the recommended torque, Do not overtighten.





If the hole collects water after the initial cleaning, this water must be removed before injecting the resin.

Note for decreased installation temperature: When installing CIA-EA at decreased installation temperature $(+32^{\circ}F < T < +50^{\circ}F (0^{\circ}C < T < +10^{\circ}C))$ the cartridge must be conditioned to $+68^{\circ}F (+20^{\circ}C)$.

Solid Substrate Installation Method - Overhead

1. Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.

2. Thoroughly clean the hole in the following sequence using the appropriate wire brush from Table 11 of ER-0311 with the required extensions and a source of clean compressed air. For holes of 15 3/4" (400mm) or less deep, a blow pump may be used:

Blow Clean x2.

Brush Clean x2.

Blow Clean x2.

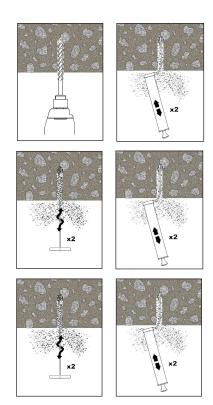
Brush Clean x2.

Blow Clean x2.

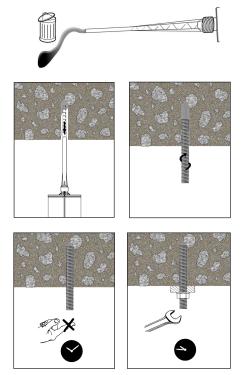
3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.

4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.

5. If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars /8" (16mm) dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.


6. Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.

7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time (see table on page 1).


8. Any excess resin will be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mouth of the hole before it sets.

9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time, on page 1, has elapsed depending on the substrate conditions and ambient temperature.

10. Attach the fixture and tighten the nut to the recommended torque, Do not overtighten.

If the hole collects water after the initial cleaning, this water must be removed before injecting the resin.

Note for decreased installation temperature: When installing CIA-EA at decreased installation temperature $(+32^{\circ}F < T < +50^{\circ}F (0^{\circ}C < T < +10^{\circ}C))$ the cartridge must be conditioned to $+68^{\circ}F (+20^{\circ}C)$.